PXIe-5105 Specifications

Ihr NI-Partner:

AMC - Analytik & Messtechnik GmbH Chemnitz

Heinrich-Lorenz-Str. 55 09120 Chemnitz

E-Mail: info@amc-systeme.de Web: www.amc-systeme.de

Tel.: +49/371/38388-0 Fax: +49/371/38388-99

Integration Partner

SYSTEM INTEGRATOR

2025-02-27

Contents

DVI0-5105 S	pecifications				-
1 VIG-2102 2	pecificacions	 	 	 	-

PXIe-5105 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All filter settings
- All impedance selections
- Sample clock set to 60 MS/s

Warranted specifications are valid under the following conditions unless otherwise noted.

- Temperature range of 0 °C to 55 °C
- The PXIe-5105 module is warmed up for 15 minutes at ambient temperature
- Calibration cycle is maintained

- The PXI Express chassis fan speed is set to HIGH, the foam fan filters are removed if present, and the empty slots contain PXI chassis slot blockers and filler panels. For more information about cooling, refer to the *Maintain Forced-Air Cooling* Note to Users available at ni.com/manuals.
- External calibration is performed at 23 °C ± 3 °C

Vertical

Analog Input

Number of channels	Eight (simultaneously sampled)
Input type	Referenced single-ended
Connectors	SMB

Impedance and Coupling

Input impedance		
50 Ω	50 Ω ±2%	
1 ΜΩ	$1\text{M}\Omega\pm\!1\%$ in parallel with a nominal capacitance of 50 pF	
Input coupling		$AC^{[1]}$, DC

Voltage Levels

Full-scale (FS) input range	
-----------------------------	--

50Ω and $1M\Omega$		0.05 V 0.2 V 1 V 6 V
1 MΩ only		30 V
Maximum input ove	erload	
50 Ω 7 V _{rms} with Peaks ≤10 V		
1 ΜΩ	Peaks ≤42 V	

Accuracy

Resolution	12 bits

Table 1. DC Accuracy [2]

Input Impedance	Input Range (V _{pk-pk})	DC Accuracy, Warranted
50 Ω	All	±(1% × Reading + 0.25% of FS + 600 μV)
1 ΜΩ	0.05 V	±(1% × Reading + 0.25% of FS + 600 μV)
	0.2 V, 1 V, and 6 V	±(0.65% × Reading + 0.25% of FS + 600 μV)
	30 V	±(0.75% × Reading + 0.25% of FS + 600 μV)

DC drift	±(0.05% of Reading + 0.02% of FS + 20 μV) per °C
----------	---

Table 2. AC Amplitude Accuracy^[3]

Input Impedance	Input Range (V _{pk-pk})	AC Amplitude Accuracy
50 Ω	All	±0.1 dB (±1.2%) of Reading
1 ΜΩ	0.05 V	±0.2 dB (±2.3%) of Reading
	0.2 V and 1 V	±0.13 dB (±1.5%) of Reading
	6 V and 30 V	±0.4 dB (±4.7%) of Reading

Table 3. Crosstalk^[4]

Input Impedance	Input Range (V _{pk-pk})	Crosstalk
50 Ω	All	≤-80 dB at 1 MHz
1 ΜΩ	0.05 V	≤-75 dB at 1 MHz
	0.2 V, 1 V, 6 V, and 30 V	≤-80 dB at 1 MHz

Bandwidth and Transient Response

Table 4. Bandwidth (-3 dB)

Table It Ballatinatin (0 aB)				
Input Impedance	Input Range (V _{pk-pk})	Bandwidth		
50 Ω	0.05 V	55 MHz		
	0.2 V, 1 V, and 6 V	60 MHz		
1 MO	0.05 V	35 MHz		
1 ΜΩ	0.2 V, 1 V, 6 V, and 30 V	60 MHz		

Bandwidth-limiting filter	24 MHz anti-alias filter
AC-coupling cutoff (-3 dB) ^[5]	12 Hz

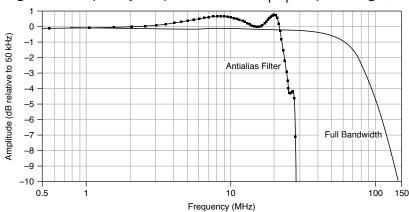


Figure 1. Frequency Response, 50 Ω , 1 V_{pk-pk} Input Range, Measured

Spectral Characteristics

 $1\,\text{M}\Omega\,\text{Spectral Performance}^{\underline{[6]}}$

Table 5. Spurious-Free Dynamic Range (SFDR)

Input Range (V _{pk-pk})	SFDR
0.2 V	70 dBc
1 V and 6 V	65 dBc

Table 6. Total Harmonic Distortion (THD)

Input Range (V _{pk-pk})	THD
0.05 V	-72 dBc
0.2 V	-75 dBc
1 V	-65 dBc
6 V	-68 dBc

Table 7. Signal to Noise and Distortion (SINAD)

Input Range (V _{pk-pk})	SINAD
0.05 V	50 dB
0.2 V	59 dB
1 V	61 dB
6 V	59 dB

1 MΩ Noise

Table 8. 1 M Ω RMS Noise [7]

Input Range (V _{pk-pk})	Full Bandwidth	24 MHz Filter Enabled
0.05 V	0.18% of FS (90 μV)	0.12% of FS (60 μV)
0.2 V	0.060% of FS (120 μV)	0.036% of FS (72 μV)
1 V	0.03% of FS (300 μV)	0.03% of FS (300 μV)
6 V	0.055% of FS (3.3 mV)	0.036% of FS (2.16 mV)
30 V	0.03% of FS (9 mV)	0.03% of FS (9 mV)

50Ω Spectral Performance

Table 9. Spurious-Free Dynamic Range (SFDR) $^{[8]}$

Input Range (V _{pk-pk})	SFDR
0.2 V	72 dBc
1 V and 6 V	72 dBc

Table 10. Total Harmonic Distortion $(THD)^{[8]}$

Input Range (V _{pk-pk})	THD
All	-75 dBc

Table 11. Signal to Noise and Distortion (SINAD) $^{[8]}$

Input Range (V _{pk-pk})	SINAD
0.05 V	59 dB
0.2 V to 6 V	62 dB

Figure 2. PXIe-5105 Dynamic Performance, 50 Ω , 1 V_{pk-pk} , with 24 MHz Filter Enabled, Measured

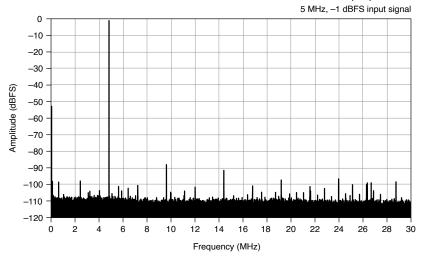
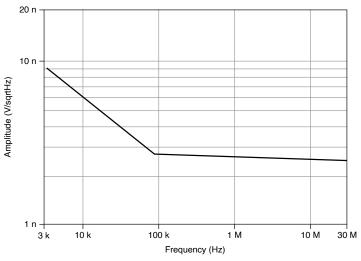



Figure 1. PXIe-5105 Spectral Noise Density, 50 Ω , 0.05 V_{pk-pk} , with Anti-Alias Filter Enabled, Nominal

50 Ω Noise

Table 12. 50 Ω RMS Noise [9]

Input Range (V _{pk-pk})	Full Bandwidth	24 MHz Filter Enabled
0.05 V	0.08% of FS (40 μV)	0.038% of FS (19 μV)
0.2 V	0.04% of FS (80 μV)	0.028% of FS (56 μV)
1 V	0.03% of FS (300 μV)	0.029% of FS (290 μV)
6 V	0.03% of FS (1.8 mV)	0.028% of FS (1.68 mV)

Skew

Channel-to-channel skew ^[10]		
24 MHz bandwidth filter disabled	≤500 ps	
24 MHz bandwidth filter enabled	≤600 ps	

Horizontal

Sample Clock

Sources			
Internal	Onboard clock (internal VCXO) ^[11]		
External	PFI 1 PXI Star		
External frequency range 4 MHz to 65 MHz		5 MHz	
$Exporting^{[12]}$			
Destination		PFI 1	
Maximum frequency 65 MHz		65 MHz	

Onboard Clock (Internal VCXO)

Real-time sample rate range ^[13]		915.5 S/s to 60 MS/s	
Timebase frequency	imebase frequency		
Timebase accuracy			
Not phase-locked to Reference clock	ocked to Reference clock ±25 pp		
Phase-locked to Reference clock	-locked to Reference clock Equal		
Sample clock delay range		±1 Sample clock period	
Sample clock delay resolution		<10 ps	

External Sample Clock

Sources	PFI 1 PXI Star
Frequency range ^[14]	4 MHz to 65 MHz
Duty cycle tolerance	45% to 55%

Phase-Locked Loop (PLL) Reference Clock

Sources	PXI_CLK10 (backplane connector) PFI 1 (front panel SMB connector)
Frequency range ^[15]	5 MHz to 20 MHz in 1 MHz increments
Duty cycle tolerance	45% to 55%
Exported Reference clock destination	PFI 1

Triggers

Reference (Stop) Trigger

Supported trigger	Reference (stop) trigger
Trigger types	Edge Window Hysteresis Digital Immediate Software
Trigger sources	CH 0 to CH 7

	PFI 1 PXI_Trig <06> Software	
Time resolution	Sample clock timebase period	
Minimum rearm time ^[16]		
Internal Onboard	ternal Onboard clock 2.4 μs	
External Sample	e clock 144 × External clock period	
Holdoff	From rearm time up to [(2 ³² - 1) × Sample clock timebase period]	
Delay	From 0 up to $[(2^{32} - 1) - Requested posttrigger samples] \times (1/Actual sample rate), in seconds$	

Related information:

• Refer to the NI High-Speed Digitizers Help for more information about which trigger sources are available for each trigger type.

Analog Trigger

	Edge
Trigger types	Window
	Hysteresis

Sources	CH 0 to CH 7 (front panel SMB connectors)
Trigger level range	100% FS
Edge trigger sensitivity	2% FS
Trigger jitter	Sample clock timebase period

Digital Trigger

Trigger type	Digital
Sources	PFI 1 (front panel SMB connector) PXI_TRIG <06> (backplane connector)

Programmable Function Interface

Connector	PFI 1 (front panel SMB connector)
Direction	Bidirectional
Coupling	AC DC

As a Sample Clock or Reference Clock

Input voltage range		
Sine wave	0.65 V _{pk-pk} to 2.8 V _{pk-pk} (0 dBm to 13 dBm)	
Square wave	0.2 V _{pk-pk} to 2.8 V _{pk-pk}	
Maximum input overloa	d	7 V _{rms} with Peaks ≤10 V
Input impedance		50 Ω
Coupling		AC

As an Input (Digital Trigger)

Destinations	Start trigger (acquisition arm) Reference (stop) trigger Arm Reference trigger Advance trigger
Input impedance	150 kΩ, nominal
V _{IH}	2.0 V
V _{IL}	0.8 V

Maximum input overload	-0.5 V, 5.5 V
Maximum frequency	65 MHz

As an Output

Sources	Start trigger (acquisition arm) Reference (stop) trigger End of record Done (end of acquisition) Sample clock timebase Reference clock
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum drive current	±24 mA

Waveform Specifications

Onboard memory size options ^[17]	16 MB 128 MB
	512 MB

Minimum record length	1 sample	
Number of samples [18]		
Pretrigger		Zero up to full record length
Posttrigger		Zero up to full record length
Allocated onboard memory per record ^[19]	[(Record length in samples × 2 bytes/sample × number of enabled channels) + 480] rounded up to the nearest 256 bytes	

Calibration

External Calibration

External calibration calibrates the onboard references used in self-calibration and the external trigger levels. All calibration constants are stored in nonvolatile memory.

Self-Calibration

Self-calibration is done on software command. The calibration corrects for gain, offset, triggering, and timing errors for all input ranges.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time ^[20]	15 minutes

Software

Driver Software

Driver support for this device was first available in NI-SCOPE14.1.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate the PXIe-5105. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

Interactive Soft Front Panel and Configuration

When you install NI-SCOPE on a 64-bit system, you can monitor, control, and record measurements from the PXIe-5105 using InstrumentStudio.

InstrumentStudio is a software-based front panel application that allows you to perform interactive measurements on several different device types in a single program.

Note InstrumentStudio is supported only on 64-bit systems. If you are using a 32-bit system, use the NI-SCOPE-specific soft front panel instead of InstrumentStudio.

Interactive control of the PXIe-5105 was first available via InstrumentStudio in NI-SCOPE18.0 and via the NI-SCOPE SFP in NI-SCOPE14.1. InstrumentStudio and the

NI-SCOPE SFP are included on the NI-SCOPE media.

NI Measurement & Automation Explorer (MAX) also provides interactive configuration and test tools for the PXIe-5105. MAX is included on the driver media.

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the NI-TClk Synchronization Help, which is located within the NI High-Speed Digitizers Help. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

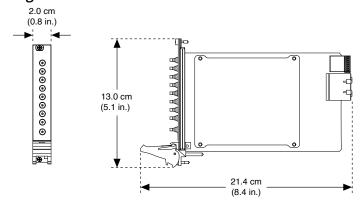
Specifications are valid for modules installed in one NI PXI-1042 chassis. These specifications do not apply to PCI modules. Specifications are valid under the following conditions:

- All parameters are set to identical values for each SMC-based module.
- Sample clock set to 60 MS/s.
- All filters are disabled.

Note Although you can use NI-TClk to synchronize non-identical modules, these specifications apply only to synchronizing identical modules.

Skew ^[21]	500 ps
Average skew after manual adjustment ^[22]	<10 ps
Sample clock adjustment resolution	<10 ps

Power


Current draw		
+3.3 V DC	1.5	A
+12 V DC	1.5	Ą
Total power		23 W

Physical

Dimensions and Weight

Dimensions	21.4 cm × 2.0 cm × 13.0 cm (8.43 in. × 0.8 in. × 5.1 in.)
Weight	520 g (18.3 oz)

Figure 1. PXIe-5105

Front Panel Connectors

Table 13. PXIe-5105 Front Panel Connectors

Label	Connector Type	Description
CH 0—CH 7		Analog input connection; digitizes data and triggers acquisitions.
PFI 1	SMB jack	PFI line for trigger input/ output, External clock in, Reference clock input/ output, and timebase out.

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-40 °C to 71 °C

Relative humidity range	5% to 95%, noncondensing
-------------------------	--------------------------

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms}

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions

- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Product Certifications and Declarations section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Engineering a Healthy* **Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Ihr NI-Partner:

AMC – Analytik & Messtechnik GmbH Chemnitz

Heinrich-Lorenz-Str. 55 Tel.: +49/371/38388-0
09120 Chemnitz Fax: +49/371/38388-99
E-Mail: info@amc-systeme.de Web: www.amc-systeme.de SySTEM INTEGRATOR

Irrtum und Änderungen vorbehalten – auch ohne vorherige Ankündigung. Verwendete Hardware- und Softwarebezeichnungen, Marken sowie Firmennamen können eingetragene Warenzeichen sein und unterliegen somit den gesetzlichen Bestimmungen. / Information in this document is subject to change without prior notice. The software and hardware designations or brand names used in this text are in most cases trademarks or registered trademarks of their respective companies and are thus subject to law.