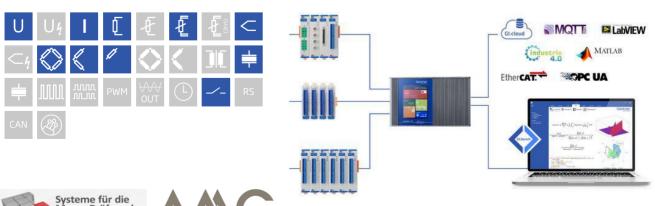
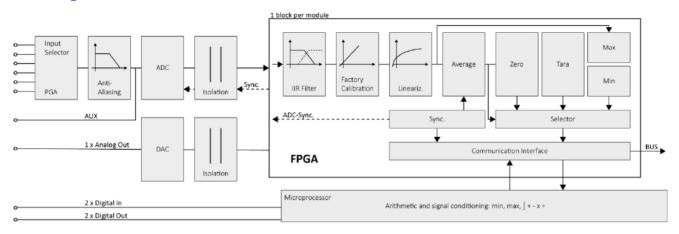
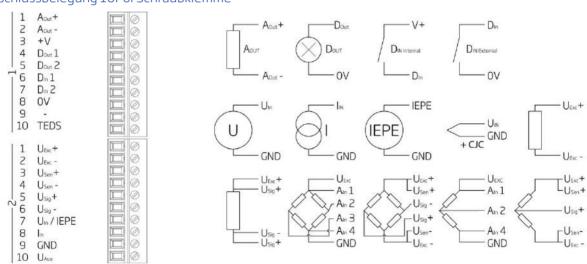
Universalmodul mit Analogem Ausgang


Q.bloxx XL – das neue Mitglied der Q.serie X – ist die ideale DAQ-Lösung für großflächige dezentrale Installationen, die leistungsfähigeren Messmodule und maßgefertigte Sensoranschlüsse benötigen. Die modularen, DIN-Schienen montierbaren Gehäuse der Q.bloxx XL-Produkte lassen sich einfach zusammenstecken und erlauben so eine schnelle Systemerweiterung. Die flexible, dezentrale Verteilung erlaubt die präzise und synchronisierte Datenerfassung nahe am jeweiligen Messpunkt. Kürzere Sensor-Kabel führen zu einer geringeren Störanfälligkeit.

- RS485 Feldbus-Schnittstelle bis zu 48 Mbps: LocalBus, bis zu 115.2 kbps: Modbus-RTU, ASCII
- Anschließbar an alle Controller Q.station X
- Elektromagnetische Verträglichkeit gemäß EN61000-4 und EN55011
- Spannungsversorgung 10 ... 30 VDC
- Montage auf Tragschiene (EN60715)

Die wichtigsten Features


- 1 universeller analoger Eingangskanal
 Spannung, Strom, Widerstand, RTD,
 Thermoelemente, Messbrücken (Voll-, Halb- und Viertel-Brücke konfigurierbar), IEPE-Sensoren
- 1 Analoger Ausgangskanal Spannung (±10 VDC) oder Strom (±22 mA)
- 2 Digitale Eingänge und 2 Digitale Ausgänge Status, Tara, Reset
- Schnelle hochauflösende Digitalisierung
 24 bit ADC, 100 kHz Abtastrate pro Kanal
- Signalkonditionierung
 Linearisierung, Filter, Mittelwert, Skalierung, Min-/Max-Speicher,
 Effektivwert, Arithmetik, Alarm
- Galvanische Trennung
 Kanal zu Kanal, Spannungsversorgung und Schnittstelle,
 Isolationsspannung 500 VDC


Universalmodul mit Analogem Ausgang

Blockdiagramm

Technische Daten

Anschlussbelegung 10Pol Schraubklemme

Analoger Eingang

Anzahl	1
Genauigkeit	0.01 % typisch
	0.025 % in beherrschter magnetischer Umgebung ¹
	0.05 % im industriellen Bereich ²
Linearitätsabweichung	0.01 % vom Endwert typisch
Wiederholpräzision	0.003 % typisch (innerhalb 24 h)
Isolationsspannung	500 VDC Kanal zu Kanal, zur Spannungsversorgung, zur Schnittstelle ³
Eingangswiderstand	100 ΜΩ
Überspannungsschutz	±100 VDC
CMRR	> 110 dB bei DC 50 / 60 Hz
CMV	± 300 V

 $^{^{\}mathrm{1}}$ entsprechend EN 61326 2006: Ergänzung B

³ Störspannungen bis 1000 VDC, dauerhaft bis zu 250 VDC

² entsprechend EN 61326 2006: Ergänzung A

Universalmodul mit Analogem Ausgang

Analog/Digital Umsetzung

Auflösung	24-bit
Wandelrate	100 kHz je Kanal
Wandelverfahren	sigma-delta
Anti-aliasing filter	20 kHz, 3rd Ordnung
Digitaler filter	Infinite impulse response (IIR), Tiefpass, Bandpass, Bandstop, Hochpass, Butterworth oder Bessel (8th Ordnung), Frequenzbereich 1 Hz bis zu 10 kHz (per Software einstellbar)
Mittelwertbildung	konfigurierbar oder automatisch entsprechend der gewählten Datenrate

Messart Spannung

Bereich	±10 V	±5 V	±1 V	±100 mV	±10 mV
Genauigkeit	±2 mV	±1 mV	±0.2 mV	±40 μV	±10 μV
Offset Drift	<0.2 mV / 10 K	<0.1 mV / 10 K	<20 µV / 10 K	<2 µV / 10 K	<1 µV / 10 K
Gain Drift	<0.01 % / 10 K	<0.01 % / 10 K	<0.01 % / 10 K	<0.01 % / 10 K	<0.01 % / 10 K
Language Office Duift	<0.2 mV / 24 h	<0.1 mV / 24 h	<20 μV / 24 h	<2 µV / 24 h	<1 µV / 24 h
Langzeit Offset Drift	<1 mV / 8000 h	< 0.5 mV / 8000 h	<0.1 mV / 8000 h	<10 µV / 8000 h	<5 μV / 8000 h
1	<0.005 % / 24 h				
Langzeitstabilität	<0.01 % / 8000 h				

Messart Strom

Bereich	±25 mA
Interner shunt	20 Ω
Genauigkeit	±5 μA
Offset Drift	<2.5 µA / 10 K
Gain Drift	< 0.01 % / 10 K
Language Office Doile	<1 µA / 24 h
Langzeit Offset Drift	<3 μA / 8000 h
I and an alternative transfer that the	<0.005% / 24 h
Langzeitstabilität	<0.01 % / 8000 h

Messart Widerstand / RTD

Bereich	5000 Ω	500 Ω	Pt100	Pt500	Pt1000
Genauigkeit (4-Leiter)	0.5 Ω	0.05 Ω	0.2 °C	0.6 °C	0.3 °C
Genauigkeit (2-Leiter)	1Ω	0.25 Ω	0.5 °C	0.6 °C	0.3 °C
Sensorspeisung	0.1 mA	1 mA	1 mA	0.1 mA	0.1 mA
Offset Drift	<0.5Ω/10 K	<0.05Ω/10 K			
Gain Drift	<0.01 % / 10 K	<0.01 % / 10 K			
Langzeit Offset Drift	<0.1Ω/24 h	<0.01Ω/24h			
Langzen onset bin t	<0.3Ω/8000 h	<0.03 Ω / 8000 h			
Langzeitstabilität	<0.005 % / 24 h				
Langzenstabilität	<0.01%/8000h				

Universalmodul mit Analogem Ausgang

Messart Thermoelemente

Тур	Bereich	Genauigkeit ¹
Тур А	-100 °C bis 1000 °C	< ±0.7 °C
Тур В	400 °C bis 1820 °C	< ±1.5 °C
Тур С	0 °C bis 2315 °C	< ±1.5 °C
Typ E, J, K	-100 °C bis 1000 °C	< ±0.7 °C
Тур Е	-270 °C bis 1000 °C	< ±1 °C
Тур К	-270 °C bis 1372 °C	< ±1 °C
Typ L	-200 °C bis 900 °C	< ±0.7 °C
Typ N	-100 °C bis 1000 °C	< ±0.7 °C
Typ N	-270 °C bis 1300 °C	< ±1 °C
Typ R, S	-50 °C bis 1768 °C	< ±1.2 °C
Typ T, U	-100 °C bis 400 °C	< ±0.7 °C
Тур Т	-270 °C bis 400 °C	< ±1 °C
Langzeitstabilität	<0.1 °C / 24 h	<0.2°C/8000 h
Tomes-atduift	Auf Nullpunkt	Auf Messempfindlichkeit
Temperaturdrift	<0.1 °C/10 K	<0.02 % / 10 K
CJC Unsicherheit	<0.3 ℃	

¹ Angaben sind nur gültig mit Netzunterdrückung aktivierter

Messart Brücke

Brückenspeisung					1 V bis 12 V einstellbar in Schritten von 1 mV (dauerhaft Kurzschlussgesichert)		
		Strom			max. 50 mA		
		Genauigkeit			±0.05%		
		Drift			±0.05%/10K		
Genauigkeits	klasse	0.05 %					
Gai	n-Drift	<0.05% / 10 k	(
		<0.02 % / 24	h				
Langz	eitdrift	<0.03 % / 8000 h					
Brückenspeisung	1 V	•	2.5 V	5 V	-	10 V	Gain
Aufnehmerwiderstand	>20Ω		>50 Ω	>100 Ω		>200Ω	
	±1000) mV/V	±400 mV/V	±200 mV	//V	±100 mV/V	1
	±100 i	mV/V	±40 mV/V	±20 mV/	V	±10 mV/V	10
	±50 mV/V		±20 mV/V	±10 mV/	V	±5 mV/V	20
D. wish	±20 m	V/V	±8 mV/V	±4 mV/V		±2 mV/V	50
Bereich	±10 m	V/V	±4 mV/V	±2 mV/V		±1 mV/V	100
	±5 mV	7/V	±2 mV/V	±1 mV/V		±0.5 mV/V	200
	±2 mV	//V	±0.8 mV/V	±0.4 mV/	′V	±0.2 mV/V	500
	±1 mV	/V	±0.4 mV/V	±0.2 mV/	'V	±0.1 mV/V	1000

Universalmodul mit Analogem Ausgang

Messart IEPE

Sensorspeisung Strom	1 mA bis 12 mA einstellbar in Schritten von 10 μA
Genauigkeit der Sensorspeißung	0.5 %
Bereich	±10 V
Eingangsfrequenzbereich	0.5 Hz bis 20 kHz
Genauigkeit	±10 mV
Offset drift	<1 mV/10 K
Gain drift	<0.01 % / 10 K
Langacit Officet Ctabilität	<1 mV/24 h
Langzeit Offset Stabilität	<3 mV / 8000 h
Long torm goin drift	<0.02% / 24 h
Long-term gain drift	<0.05 % / 8000 h

Analoger Ausgang

Anzahl	1
Genauigkeit	0.02 % typisch
Ausgangsart	Spannung oder Strom
Nennausgangswiderstand	<1 Ω, dauerhaft Kurzschlussgesichert

Analog/Digital-Umsetzung

Auflösung	16-bit
Wandelrate	100 kHz per Kanal
Einschwingzeit	Зµѕ

Spannungsausgang

Ausgangsspannung	±10 VDC	
Zulässiger Lastwiderstand	>1 kΩ	
Langzeitdrift	<1 mV / 24 h	<2.5 mV / 8000 h
Temperatureinfluss	<2 mV / 10 K Auf Nullpunkt	< 0.05 % / 10 K Auf Messempfindlichkeit
Rauschspannung	<10 mV bei 1 kHz	<2 mV bei 10 Hz

Stromausgang

Ausgangsstrom	0 bis ±20 mA	
Zulässige Bürde	<500 Ω	
Einfluss der Bürde	<0.02 μΑ / Ω	
Langzeitstabilität	<2 μA / 24 h	<5 µA / 8000 h
Temperaturdrift	<4 μA / 10 K Auf Nullpunkt	< 0.05 % / 10 K Auf Messempfindlichkeit
Rauschstrom	<20 µA bei 1 kHz	<4 μA bei 10 Hz

Universalmodul mit Analogem Ausgang

Digitale I/Os

Anzahl	2 Eingänge, 2 Outputs
Ansprechzeit	0.2 ms
Eingang	Status, Tara, Rücksetzen
Eingangsspannung / Eingangsstrom	max. 30 VDC / max 0.5 mA
Untere / obere Schaltschwelle	<2.0 V (low) / >10 V (high)
Ausgang	Status, Alarm
Kontakt	Open Drain p-Kanal MOSFET
Belastbarkeit	30 VDC / 100 mA (ohmsche last)

Kommunikationsschnittstelle

Protokolle	Proprietärer Local-Bus (115200 bps bis zu 48 Mbps, Latenz <100 ns) ASCII (19200 bps bis zu 115200 bps) Modbus RTU
Datenformat	8E1
Standard	ANSI/TIA/EIA-485-A, 2-wire

Versorgung

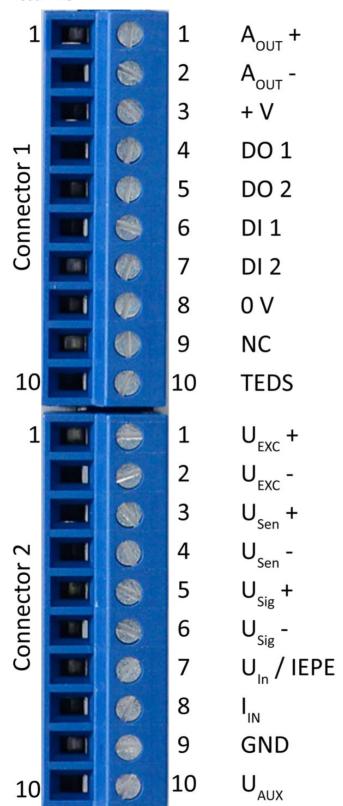
Versorgungsspannung	10 - 30 VDC, Überspannungs- und Verpolungsschutz
Leistungsaufnahme	3 W (ca.)
Spannungseinfluss	<0.001 % / V

Umgebungsbedingungen

Elektromagnetische Verträglichkeit	entsprechend IEC 61000-4 und EN 55011
Betriebstemperatur	-20°C bis zu +60°C
Lagertemperatur	-40°C bis zu +85°C
Relative Luftfeuchtigkeit	5 - 95 % bei 50°C (nicht kondensierend)

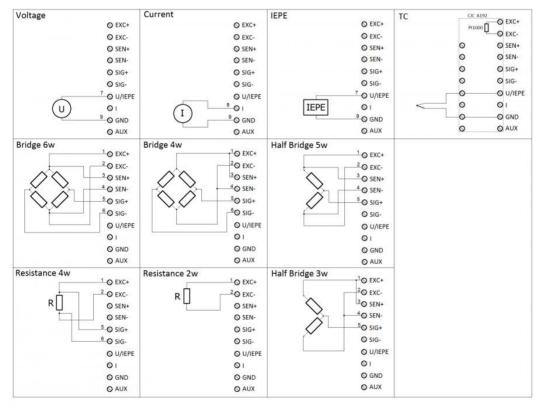
Anmerkungen

Alle Angaben sind gültig nach einer Aufwärmzeit von 45 Minuten


Technische Änderungen vorbehalten

Universalmodul mit Analogem Ausgang

Modul Pins


Universalmodul mit Analogem Ausgang

Anschlussbelegung

Stecker 1

Voltage Output		Current Output			
	1 O AO+		1 ⊗ AO+		
b	2 ⊗ AO-		2 ⊘ AO-		
	→ U		→ U		
	O DO1		O DO1		
	O DO2		O DO2		
	O DI1		O DI1		
	□ DI2		O DI2		
	ov		O ov		
	⊗ N.C.		N.c.		
	▼ TEDS		▼ TEDS		
Digital Output		Digital Input		Digital Input	
	O AO+	Internal Voltage	O AO+	External Voltage	
		^			
	○ +U		3 ⊘ +U		
-	4 ⊘ DO1		O DO1		O DO1
	5 ○ DO2		O DO2		O DO2
	O DI1	-00	6 ♥ DI1		6 O DI1
8 (O DI2	Loo	7 O DI2		7 ⊘ DI2
	8 ⊘ ov		⊚ ov	24V T	8 O OV
	N.C.		◎ N.C.		O N.C.
	O TEDS		O TEDS		▼ TEDS

Stecker 2

Universalmodul mit Analogem Ausgang

Mechanische Informationen

Material	Aluminium und ABS
Abmessungen (B x H x T)	30x 145 x 135mm
Gewicht	ca. 500 g

Bestellungs Informationen

Artikelnummer	645730

Gantner Instruments

Austria | Germany | France | Sweden | India | USA | China | Singapore Montafonerstraße $4\cdot A$ -6780 Schruns · T +43 55 56 · 77 463-0 Senefelder Str. $1\cdot D$ -63110 Rodgau · T +49 6106 66008-0

Vertrieb durch

AMC – Analytik & Messtechnik GmbH Chemnitz

 Heinrich-Lorenz-Str. 55
 Tel.: +49/371/38388-0

 09120 Chemnitz
 Fax: +49/371/38388-99

 E-Mail: info@amc-systeme.de
 Web: www.amc-systeme.de

